22,043 research outputs found

    X-ray-binary spectra in the lamp post model

    Full text link
    [Abridged] Context. The high-energy radiation from black-hole binaries may be due to the reprocessing of a lamp located on the black hole axis, emitting X-rays. The observed spectrum is made of 3 components: the direct spectrum; the thermal bump; and the reflected spectrum made of the Compton hump and the iron-line complex. Aims. We aim at computing accurately the complete reprocessed spectrum (thermal bump + reflected) of black-hole binaries over the entire X-ray band. We also determine the strength of the direct component. Our choice of parameters is adapted to a source showing an important thermal component. Methods. We compute in full GR the illumination of a thin disk by a lamp along the rotation axis. We use the ATM21 radiative transfer code to compute the spectrum emitted along the disk. We ray trace this local spectrum to determine the reprocessed spectrum as observed at infinity. We discuss the dependence of the local and ray-traced spectra on the emission angle and spin. Results. We show the importance of the angle dependence of the total disk specific intensity spectrum emitted by the illuminated atmosphere when the thermal disk emission if fully taken into account. High spin implies high temperature in the inner regions, so the emitted thermal disk spectrum covers the iron-line complex. As a result we locally observe absorption lines produced in the hot disk atmosphere. Absorption lines are narrow and disappear after ray tracing the local spectrum. Conclusions. Our results mainly highlight the importance of considering the angle dependence of the local spectrum when computing reprocessed spectra, as was already found in a recent study. The main new result of our work is to show the importance of computing the thermal bump of the spectrum, as this feature can change considerably the observed iron-line complex.Comment: 12 pages, 10 figures, accepted in A&A; 2 paragraphs added in section 2 wrt version

    Chemical modification of poly(p-phenylene) for use in ablative compositions

    Get PDF
    Development of ablative materials based on modification of polyphenylene compounds is discussed. Chemical and physical properties are analyzed for application as heat resistant materials. Synthesis of linear polyphenylenes is described. Effects of exposure to oxyacetylene flame and composition of resultant char layer are presented

    Error analysis for Mariner Venus/Mercury 1973 conducted at the JPL Mesa west antenna range

    Get PDF
    Theoretical analysis and experimental data are combined to yield the errors to be used with antenna gain, antenna patterns, and RF cable insertion loss measurements for the Mariner Venus-Mercury 1973 Flight Project. These errors apply to measurements conducted at the JPL Mesa, West Antenna Range, on the high gain antenna, low gain antenna, and RF coaxial cables

    Bifurcation and Chaos in Coupled Ratchets exhibiting Synchronized Dynamics

    Full text link
    The bifurcation and chaotic behaviour of unidirectionally coupled deterministic ratchets is studied as a function of the driving force amplitude (aa) and frequency (ω\omega). A classification of the various types of bifurcations likely to be encountered in this system was done by examining the stability of the steady state in linear response as well as constructing a two-parameter phase diagram in the (aωa -\omega) plane. Numerical explorations revealed varieties of bifurcation sequences including quasiperiodic route to chaos. Besides, the familiar period-doubling and crises route to chaos exhibited by the one-dimensional ratchet were also found. In addition, the coupled ratchets display symmetry-breaking, saddle-nodes and bubbles of bifurcations. Chaotic behaviour is characterized by using the sensitivity to initial condition as well as the Lyapunov exponent spectrum; while a perusal of the phase space projected in the Poincareˊ\acute{e} cross-section confirms some of the striking features.Comment: 7 pages; 8 figure

    The form of cosmic string cusps

    Get PDF
    We classify the possible shapes of cosmic string cusps and how they transform under Lorentz boosts. A generic cusp can be brought into a form in which the motion of the cusp tip lies in the plane of the cusp. The cusp whose motion is perpendicular to this plane, considered by some authors, is a special case and not the generic situation. We redo the calculation of the energy in the region where the string overlaps itself near a cusp, which is the maximum energy that can be released in radiation. We take into account the motion of a generic cusp and the resulting Lorentz contraction of the string core. The result is that the energy scales as rL\sqrt {rL} instead of the usual value of r1/3L2/3r^{1/3} L^{2/3}, where rr is the string radius and LL and is the typical length scale of the string. Since r<<Lr << L for cosmological strings, the radiation is strongly suppressed and could not be observed.Comment: 15 pages, ReVTex, 2 postscript figures with eps

    Response of non-equilibrium systems at criticality: Exact results for the Glauber-Ising chain

    Full text link
    We investigate the non-equilibrium two-time correlation and response functions and the associated fluctuation-dissipation ratio for the ferromagnetic Ising chain with Glauber dynamics. The scaling behavior of these quantities at low temperature and large times is studied in detail. This analysis encompasses the self-similar domain-growth (aging) regime, the spatial and temporal Porod regimes, and the convergence toward equilibrium. The fluctuation-dissipation ratio admits a non-trivial limit value X=1/2X_\infty=1/2 at zero temperature, and more generally in the aging regime.Comment: 27 pages. 3 figures. To appear in Journal of Physics

    Universal optical amplification without nonlinearity

    Full text link
    We propose and experimentally realize a new scheme for universal phase-insensitive optical amplification. The presented scheme relies only on linear optics and homodyne detection, thus circumventing the need for nonlinear interaction between a pump field and the signal field. The amplifier demonstrates near optimal quantum noise limited performance for a wide range of amplification factors.Comment: 5 pages, 4 figure

    Memory in aged granular media

    Full text link
    Stimulated by recent experimental results, we simulate ``temperature''-cycling experiments in a model for the compaction of granular media. We report on the existence of two types of memory effects: short-term dependence on the history of the sample, and long-term memory for highly compact (aged) systems. A natural interpretation of these results is provided by the analysis of the density heterogeneities.Comment: 5 eps figures, uses euromacr.tex and europhys.sty (included

    The relative influences of disorder and of frustration on the glassy dynamics in magnetic systems

    Full text link
    The magnetisation relaxations of three different types of geometrically frustrated magnetic systems have been studied with the same experimental procedures as previously used in spin glasses. The materials investigated are Y2_2Mo2_2O7_7 (pyrochlore system), SrCr8.6_{8.6}Ga3.4_{3.4}O19_{19} (piled pairs of Kagom\'e layers) and (H3_3O)Fe3_3(SO4_4)2_2(OH)6_6 (jarosite compound). Despite a very small amount of disorder, all the samples exhibit many characteristic features of spin glass dynamics below a freezing temperature TgT_g, much smaller than their Curie-Weiss temperature θ\theta. The ageing properties of their thermoremanent magnetization can be well accounted for by the same scaling law as in spin glasses, and the values of the scaling exponents are very close. The effects of temperature variations during ageing have been specifically investigated. In the pyrochlore and the bi-Kagom\'e compounds, a decrease of temperature after some waiting period at a certain temperature TpT_p re-initializes ageing and the evolution at the new temperature is the same as if the system were just quenched from above TgT_g. However, as the temperature is raised back to TpT_p, the sample recovers the state it had previously reached at that temperature. These features are known in spin glasses as rejuvenation and memory effects. They are clear signatures of the spin glass dynamics. In the Kagom\'e compound, there is also some rejuvenation and memory, but much larger temperature changes are needed to observe the effects. In that sense, the behaviour of this compound is quantitatively different from that of spin glasses.Comment: latex VersionCorrigee4.tex, 4 files, 3 figures, 5 pages (Proceedings of the International Conference on Highly Frustrated Magnetism (HFM2003), August 26-30, 2003, Institut Laue Langevin (ILL), Grenoble, France
    corecore